Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II.

نویسندگان

  • Chunfen Zhang
  • Honggao Yan
  • Zachary F Burton
چکیده

When RNA polymerase II (RNAP II) is forced to stall, elongation complexes (ECs) are observed to leave the active pathway and enter a paused state. Initially, ECs equilibrate between active and paused conformations, but with stalls of a long duration, ECs backtrack and become sensitive to transcript cleavage, which is stimulated by the EC rescue factor stimulatory factor II (TFIIS/SII). In this work, the rates for equilibration between the active and pausing pathways were estimated in the absence of an elongation factor, in the presence of hepatitis delta antigen (HDAg), and in the presence of transcription factor IIF (TFIIF), with or without addition of SII. Rates of equilibration between the active and paused states are not very different in the presence or absence of elongation factors HDAg and TFIIF. SII facilitates escape from stalled ECs by stimulating RNAP II backtracking and transcript cleavage and by increasing rates into and out of the paused EC. TFIIF and SII cooperate to merge the pausing and active pathways, a combinatorial effect not observed with HDAg and SII. In the presence of HDAg and SII, pausing is observed without stimulation of transcript cleavage, indicating that the EC can pause without backtracking beyond the pre-translocated state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NTP-driven translocation by human RNA polymerase II.

We report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using this method, RNAP II is stalled briefly a...

متن کامل

Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome

Although RNA polymerases (RNAPs) are able to use RNA as template, it is unknown how they recognize RNA promoters. In this study, we used an RNA fragment derived from the hepatitis delta virus (HDV) genome as a model to investigate the recognition of RNA promoters by RNAP II. Inhibition of the transcription reaction using an antibody specific to the largest subunit of RNAP II and the direct bind...

متن کامل

FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation.

FCP1, a phosphatase specific for the carboxy-terminal domain of RNA polymerase II (RNAP II), was found to stimulate transcript elongation by RNAP II in vitro and in vivo. This activity is independent of and distinct from the elongation-stimulatory activity associated with transcription factor IIF (TFIIF), and the elongation effects of TFIIF and FCP1 were found to be additive. Genetic experiment...

متن کامل

Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis

In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop ...

متن کامل

Transcription factors IIF and IIS and nucleoside triphosphate substrates as dynamic probes of the human RNA polymerase II mechanism.

The mechanism for elongation catalyzed by human RNA polymerase II (RNAP II) has been analyzed using millisecond phase transient state kinetics. Here, we apply a running start, two-bond, double-quench protocol. Quenching the reaction with EDTA indicates NTP loading into the active site followed by rapid isomerization. HCl quenching defines the time of phosphodiester bond formation. Model-indepen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 50  شماره 

صفحات  -

تاریخ انتشار 2003